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INmRODUCTIONI
Ever since experimental techniques for observing dislocations

I have been extant, one of the most commonly measured parameters in

the study of dislocations has been the density of dislocations.

Indeed whenever the yield strength of a material is mainly dependent

on interactions between dislocations, one generally expects that the

higher the density of dislocations, the higher will be the yield

stress. Flow stress, electrical resistivity, work hardening rate,

and many other parameters have been correlated with dislocation density

I in numerous investigations.

One of the problems in making an experimental determination of

dislocation density by a direct observation technique is the lack of

a spatially continuous distribution of dislocations throughout a

material. Dislocations cluster near grain boundaries, form "tangles",

and generally do not arrange themselves in a uniform manner. This is

the main problem that will be examined here. A discussion of problems

in making measurements of density in non-homogeneous media will first

be given.
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SECTION I.

DENSITY DEEMINATIONS FOR NON-MOEN US MEDIA

W en one is measuring the mass density of a material like steel,

one simply selects a piece of it with a shape which has an easily deter-

mined volume, say a cube, and with a mass which is readily determined by

a convenient scale or balance. Since the material is macroscopically - "

homogeneous it matters little if the piece has a volume of one cubic

centimeter or one cubic meter; one will obtain the same mass density.

However, for certain materials, namely non-homogeneous materials, the

size of the object one uses to make density determinations does matter.

The determination of mass density for a material such as -.

sintered WC-Co could be uncertain if it were possible to get a small enough -.

volume so that only a very small number (or no) WC particles were in the

Co matrix (or if only one WC particle were used with no Co). On an even

smaller level of measurement, if, in the Co, one could determine the mass .

of a volume containing only a Pew atons, one would again have an uncertainty .

in the determination of mass density. Long (1961) gives a discussion similar

to that given here for the case of fluids.
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SECTION II.

[ REATIONSHIPS BETWEN VARIOUS DISLOCATION DENSITY DEFINITIONS

W Dislocations are considered as line elements in a volume, so the

definition of dislocation density which is normally used is the line

length of dislocations per unit volume. 'his is the "true" or "length"

density, pL' and its dimensions are ALn2 . Mother density definition,

which is employed in surface investigations of dislocations such as the

etch-pit method, is the "intersection" density, pI. The intersection

density is the number of dislocation lines piercing a unit surface. The

dimensions of intersection density are also EL- 2 ]. The question arises

as to whether these two densities are numerically equal.

Hirsch (1956) and Lomer (1959) state that the total line length

in a unit volume is three times the number piercing a unit area. However,

[ I Frank (1957) and Livingston (1962) point out that Hirsch and Lcmer were

wrong and that the factor should be two. An example which shows the prob-

able source of Hirsch and Laner's error follows. An appealing dislocation

configuration to take is straight dislocations running parallel to the

, edges of a unit cube. If we take 100 dislocations equally distributed over

g each face a, one cm as the edge length, we have a total line length of

dislocations equal to 300 cm. The length density is then 300 cm- 2 . If we

I count the points of emergence in one plane and divide by the area, we get

the intersection density. Table 1 shows the ratio of length and inter-

7 Usection densities when using different "counting planes" (Figure 1). We

* see that by taking different counting planes we obtain different values of

Pl and thus different values of PL/l' The problem with this approach Is

9 that the dislocation lines are not randomly arranged. This is such an
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appealing configuration for obtaining a correlation between intersections

and dislocations (and dislocation lengths) that as late as 1964, Akulov

(1964, 770) uses it also and incorrectly relates intersections with total

numter of dislocations.

Since only indications about how to derive a relationship between

PI and pL are given in the literature (Frank, 1957; Livingston, 1962), a

rigorous derivation is given here. In figure 2a, a unit cube is shown

with all dislocations oriented at an angle 0 to the normal to the horizontal

faces. All are drawn in the same direction for clarity. The internection

density on the top face is the number of intersections, N, divided by unit

area, so Pl a N.

The length density is WM)(L) divided by unit volume. Thus

PL - N/cos 0. Hence PI 1  PL cos *. This is only for one angle, 0. If

we now take the spatial average p, over the volume of the unit sphere,

figure 2b, we get:

JIcos 01 dV
V

PI . .

V

where dV is the differential volume dV ur sin de d 1 d r

2PL 1 os 0 sin Odo dO rdr

PI o G-o ruo

sin 0 do J O rdr

0 0 0

PI - W "

0 (1)

2 OT W PL
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In transmission electorn microscopy, one can measure the total

projected length of dislocation lines, i', in a given area. Since the

projected length, L', of a dislocation of length L is Llsinfi (see

figure 2a), we can do the same analysis as we did in the preceeding

1 I paragraph to obtain a relationship between true, Z, and projected

total dislocation length for a random distribution:
211" 1

V 0Jt ELIsin 27 d

JidV sin dO Jrdr
V 0 0 0

[ j7r

= -9.,r sin 4x1 = (1-cos 2 )dO

IT I
ir (2)

Equation (2) has been indicated previously by Bailey and Hirsch (1960).

Knowing the thickness of the specimen, t, and the area over

which the projected length, 9', was determined, a value of pL can be

found from equation (2):

* 4 M''3
PL -- f --

Although this is a valid method, it certainly is very tedious to use

since the measurement of i' is very time consuming for the larrve areas

which are required since dislocations are not uniformly distributed

throughout the material.
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To shorten the tim consumed in es imating dislocation densities,

Hun (1961) applied the Buffon "needle" problem as extended by Smith and

Guttman (1953). Instead of measuring the projected length of dislocation

lines per unit area, the number of intersections, n, of dislocations with

a set of random grid lines of total length R can be counted. Using Smith

and Guttman's equation:

' n (4)

Ham modified equation (3) to find:

-L (5)

provided n is large enough. In Ham's severely work hardened aluminum,

using five lines drawn in random directions on a picture taken at 20,OOOX

gave a large enough value of n (A 50).

Equations (1) through (5) all depend upon a spatially random

orientation of dislocation lines. The relationship between p, and PP

equation (1), also assumes that each dislocation piercing the surface is

indicated (e.g., by an etch-pit). In addition to the requirement of random-

ness, an assumption made in obtaining equation (2), and thus equations (3)

through (5), is that all dislocations are visible in the projected image.
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SECTION III

THE VALIDITY OF ASS1M ONS MADE IN TME DERIVATION OF
DISLOCATION DENSITY RELATONSHIPS k

Dislocations are seldmn found to be uniformly distributed' through-

out a specimen. They tend to form in tangles and networks, thus causing

non-unifom dislocation densities in a specimen (Wilsdorf, 1963). Also,

Prince and Richimn (1969) in their study of Al-Si alloys have shown that

the smaller the silicon particle in the aluminum matrix, the larger the

relative dislocation density in the vicinity of the particle.

[ In the etch-pit method of observing dislocations an ctchant

preferentially attacks the regions where dislocations (and other areas

[ of atomic mismatch) pierce the surface causing etch-pits. The longer

the etchant is allowed to stay in contact with the material, the larger

the etch-pits. For optimum resolution, etch-pits should be as small as

possible while still being discernable. To increase the resolution,

Livingston (1962) and others have used shorter etching times which gave

optically non-discernable etch-pits but these can be seen by electron

microscopy by using a replication technique. The resolution limit for

m optical microscopy is about 0.7p for the determination of etch-pits

( 10' cm"2 ) while that for the replication technique is about 0.21

(pu 109 cm-2). Thle spacing in very high density regions can be less than

this, so etch-pit methods generally underestimate dislocation densities.

The question of whether there is an etch-pit for every dislocation

and a dislocation for every etch-pit has not been resolved for all mater-

ials. Dash's (1957) work of decoiating dislocations in silicon using

copper nitrate has shown a definite one-to-one correspondence of etch-pits

to decorated dislocations. Gilman and Johnston (1957) have convincingly
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argued for one-to-one correspondence in LiF crystals. Ore of their

stroeet points is that when dislocations move away from original emer-

gmce points, subsequent etching reveals flat bottomed pits. Measured

diffraction data for X-ray investigation of LiF is also pointed out by

them as evidence for one-to-one correlation since it relates closely

to the number of etch-pits formed.

Livingston (1962) points out the consistency of hs data

(etch-pits in Cu on [1i13 planes) and electron microscopic investiga-

tions by Bailey. However, Bailey (1963) rightly feels thqt this agree-

ment is fortuitous since electron microscope techniques also underestimate

dislocation density as we will see below. .

Another investigation which examines the question of one-to-one

correspondence is the work of Ruff (1962). In Cu he etched [111] planes

of 1000 A thick electron microscope specimens. In each case Ruff observes

more than one dislocation per etch pit, but also notes that some nits

are caused by impurity aggregates which tends to make the etch-pit density

closer to the true pL" Unfortunately, after etching, the very thin foils

had to be washed, dried, and sometimes remounted for electron microscope

investigation. This process makes it possible for new dislocations to

be introduced and for old ones to move. Ruff took great pains to minimize

this and feels that his findings are not greatly in error.

The resolution of the Berg-Barrett (reflection) and Lang•

(transmission) topographic methods of X-ray microscopy limits their

usefulness to dislocation densities less than about 105 cm- 2 (Otte and

Hren, 1966). The Debye-Scherrer X-ray diffraction method will permdt



K Infofmation to be gained about dislocation densities and distribution up

tothe highest obtanale densities but with less detail (Gay e t 21, 1953).

Hordon (1962) states that "...errcrs in the X-ray measurements due to

instrumental broadening tend to overestimate dislocation density..."

I In electron microscopy, two major factors limit the accuracy oo

dislocation density determinations. The rearrangement of dislocations

[ tduring thinning and the overlapping of dislocation images both affect

experimental pL values.

In an early study, Ham and Sharpe (1961) argue that if the

dislocations in thin foils are really random,, the intersection density as

~obtained by counting the ends of lines on an electron-irdcrograph should
equal that obtained by the random lime method, equation (5). They found

bthat in co u i num the ntersection density was 20 greater

than the density found by the randoma line method. This indicates that

I in the thinned foil the dislocations are preferentially oriented toward

the normal to the surface. Later, Valdrt and Hirsch (1963) observed in

18-8 stainless steel ( 3000 A thick film) that during electropolishing,
' I about 20% of the dislocations move. The general character of the networks,

etc., are not changed, but the dislocations move to relieve internal

ir stresses and shorten by rotating in their slip planes. The translation of

dislocations does riot alter accuracy of estimates of PL' but rotations do

alter the accuracy since there is then preferential orientation. They

K estimate that in networks their value of PL may be in error in thin foils

by as much as 30%. Dislocation loops near the surface may slip out of

the foil due to image forces (Hirsch and Schmitz, 1962). 'hIs is a case

where translations of dislocations does matter in deference to Hirsch's own

I previous statements.
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In electron microscopy investigations, particularly in

thicker foils, the overlapping of dislocation imapes becomes seriouF-.

As the foils are made thinner, overlapping is less of a problem but the

dislocations adjust their positions so the rearrangement error becomes

greater (Wilsdorf, 1963). Also, care must be taken so that all i.rnres

are visible. This can be checked by tilting the specimen (ntte and

Hren, 1966).

As has been pointed out by Seeger (1964), the significance of

counting mean, as opposed to local, dislocation densities in all methods

is questionable. Such mean densities underestimate the importance of

the regions of low dislocation density where most of the dislocation

movement during plastic deformation may occur. Also, the addition of - -

more dislocations to an already "impenetrable" barrier will increase

the dislocation density but will not change the effect of the barrier.

10



I,

As ha~s been rigorously derived here, the "true" or line lengthI

dislocation density is twice the "intersection" density. The relation-

ships between these densities and various geometrical parameters haveH ' been derived and their applicability discussed. In the case of disloca-

tion density detenninations in very thin foils using transmission

electron microscopy, the asstmption of a random distribution of disloca-

tion lines is not physically reasonable.

Further work needs to be done to put the thin foil dislocation

density determinations on a more sound physical footing. This further

work should include quantitative estimates (from geometrical arguments)

of the change in dislocation density due to dislocations rearranging

themselves to at least partially relieve internal stresses.

It may be convenient to argue that dislocation densities need

not be known too accurately, so why bother with "exact" mathematical

g analyses? The obvious answer is that if you can do somethinp correctly

with little (or no) extra work, why not?
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TAE I

C(MPARISON OF IEWM AND INTEM ON DENSITIES

F(H A NON-ANDOM DISLOCATION ARRANG4EW1W (LINES PARALEL

TO MiE THREE COORDINATE AXES) (PL = 300 cm-2)

Emergence Area PI PLPlane Points (cm 2) (cur2 PI

(100) 100 1 100 3

(110) 100 x 2 v'T" 142 2.1

(III) 50 x 3 173 1.7
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I FIGURE 1 "Counting Planes" on unit cube
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PI

L MT

L- NI- 1
N.L a. Tu- o

1 / PI = 'Cos * * PL

FIGURE 2a. Relationslip between p, & PL or
arbitrary *-

FIGURE 2b. Unit Sphere with spatial averageof
dislocation directions. eo
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ICHI

3repcort .p-rives rigor=u derivations of relationships between

var'ious geometricil parameters and the "intersection" and "line length"

3 dislocation densities. The relationship between the two menns of

obtaining dislocation density has not been derived previously in the

literature. A discussioni is also giver regarding the validity of the

assuniptions made in the derivations.* For a random arrangin-t of

[ ~ Ndis3locations, the "l2ength" dislocation density is twice the "Inter-

Ii section" density.
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ABSTRACT -"

This report gives rigorous derivations of relationships between

various geometrical parameters and the "intersection" and "line length"

dislocation densities. The relationship between the two means of

obtaining dislocation density has not been derived previously in the

literature. A discussion is also given regarding the validity of the

assumptions made in the derivations. For a random arrangement of

dislocations, the "length" dislocation density is twice the "inter-

section" density.
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